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• What is Single molecule spectroscopy (SMS)?
To detect one single molecule and record its spectroscopy

• Why SMS?
SMS removes ensemble average :
(1) allowing the exploration of hidden heterogeneity

in complex condensed phases 
(2) direct observation of dynamical state changes

• How SMS?
(1)Dilute sample (typically 10-9~10-12 M)

diffraction limit:   Spot Size = 1.22λ/N.A. 
(2)High spatial resolution (e.g. 1.2<NA, 40x<Magnification)
(3)Sufficiently high SNR (by using filters with high OD)
(4)Fine step stage and data processing
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Fig.1 System schematic diagram
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Fig.2 (a) Prism type TIR and (b) Epi-fluorescence geometry 

4um

Fig3. Image of (a)10-10 M Cy5 single molecules on coverslip (b) 
5x10-11M Oxazine 1 on coverslip (c) 5x10-11M Oxazine 1 on TiO2
nanoparticle (NP) coated cover coverslip

Fig4. TTTR measurements differ from traditional TCSPC in that both the 
start-stop time (time between excitation pulse and single photon 
emission,τi ) and the absolute arrival time (time since the start of 
experiment, ti ) of each photon are measured. 
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Fig 5 Fluorescence decay of single Oxazine1 molecule dispersed on 
TiO2 NP coated cover coverslip
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Fig 6 Distribution of single molecule radiative lifetime for 80 different 
oxazine 1 molecules dispersed on TiO2 NP coated cover coverslip
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Fig7. Fluorescence intensity trajectories of Oxazine 1 spin-coated 
dye solutions (0.1nM) on coverslips or on TiO2 NP coated cover 
coverslips: (a) trajectory of Oxazine in the absence of TiO2 NP;
(b) and (c) trajectory of Oxazine in the presence of TiO2 NP 
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Fig 8. (a) Schematic presentation of a model of photoinduced processes 
in a dye-sensitized TiO2 system (b) principle of operation of dye-
sensitized solar cell (c) current intensity trajectory of DSSC excited by
630nm pulse laser.
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Fig9. SEM images of TiO2 NP with particle sizes ~20nm

We report on single-molecule studies of photosensitized interfacial 
electron transfer (ET) processes in Oxazine1-TiO2 NP systems, using
time-correlated single-photon counting coupled with confocal
fluorescence microscopy. Fluorescence intensity trajectories of 
individual dye molecules adsorbed  on TiO2 NP surface showed 
fluorescence fluctuations and blinking, with time constants ranged 
from several milliseconds to seconds. Such fluctuations are attributed 
to discrete electron transfer events.

Conclusions


