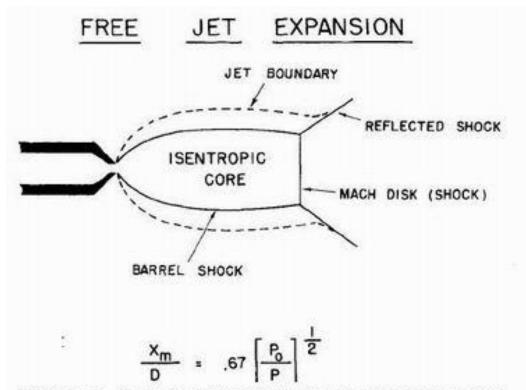
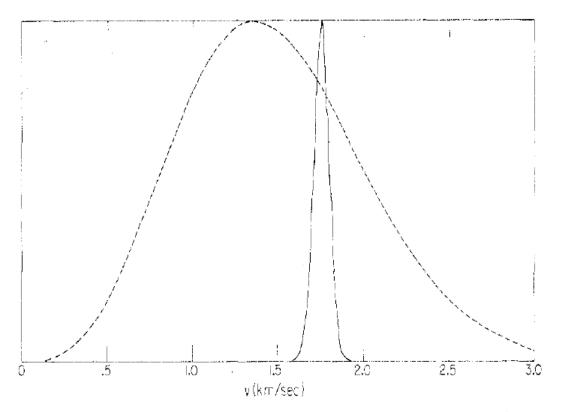

Molecular beam technique


A supersonic jet expansion technique can be used to prepare gas-phase polyatomic molecules, complexes, or clusters in the electronically ground (S_0) state. The expansion of a high pressure (e.g. 1-3 atm) of gas (or seeded gas mixture) into a vacuum (~10⁻⁶ torr) through an aperture (e.g. 150 μm) is termed a supersonic expansion. This isentropic expansion process quenches the internal rotations and vibrations of molecules. and can lead to substantial cooling of molecular internal (rotational and vibrational) energy. It results in a narrow spectral line. Since the rotational cooling is more efficient than the vibrational cooling, scientists often referred to as a rationally cooled process. When a supersonic jet is collimated by a skimmer, it is called a molecular beam.

Schematic of supersonic jet apparatus

Ref.: Smalley, et al. J. Chem. Phys. 64, 3266 (1976). The fluorescence excitation spectrum of the HeI₂ van der Waals complex

Shock structure surrounding the expanding of a free jet



MBFIG. 1. Shock structure surrounding the expanding gas of a free jet. Nozzle pressure is P_0 , ambient pressure in expansion chamber is P_1 ; D is the diameter of the nozzle opening, X_m is the distance to the mach disk from the nozzle.

For an isentropic expansion of an ideal gas, e.g. He or Ar, $T_2/T_1 = (P_2/P_1)^{[(\gamma-1)/\gamma]}$ $\gamma = Cp/Cv = 5/3,$ If $T_1 = 273$ K, $P_2 = 10^{-4}$ torr, $P_1 = 84$ atm, then $T_2 = T_1 \; (P_2/P_1)^{[(\gamma-1)/\gamma]}$ $= 273 \; [10^{-4}/(84x760)]^{[2/3]}$ $T_2 = 3.7x \; 10^{-4}$ K (translational temperature)

Ref.: Smalley, et al. J. Chem. Phys. 64, 3266 (1976). The fluorescence excitation spectrum of the HeI₂ van der Waals complex

Velocity distributions of effusive and supersonic molecular beams

Figure 1. Velocity distribution in effusive molecular beam (dashed curve) and supersonic molecular beam (solid curve). Both curves are normalized to unity at the most probable velocity and are for helium at a reservoir temperature of 300 K. The curve for the supersonic molecular beam assumes the gas has been expanded to Mach 30.

Smalley, et al. Acct. Chem. Res. 10 (1977) 139-145. Spectroscopy with supersonic jets

Vibronic spectrum of NO₂

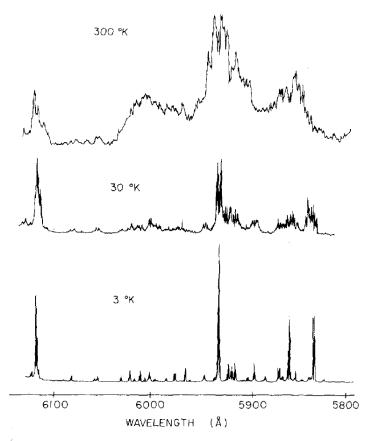


FIG. 1. A portion of the fluorescence excitation spectrum of NO_2 for (top) a conventional room temperature sample of pure NO_2 at 0.04 torr pressure, (middle) a supersonic beam of pure NO_2 , and (bottom) a supersonic beam of 5% NO_2 in Ar. All spectra were taken using a cw dye laser. Laser bandwidth was 0.5 Å for the lower two spectra.

Gas cell, 0.04 torr, 300 K

NO₂ supersonic beam, 30 K

5% NO₂ in Ar seeded supersonic beam, 3 K

Nozzle diameter D = 0.050 mm, skimmer opening = 1 mm, located 0.36 cm from nozzle

Smalley, et al. J. Chem. Phys. 61 (1976) 4363-4364. Laser spectroscopy of supersonic molecular beams: Application to the NO₂ spectrum

(a) The broad excitation fluorescence spectrum of pure room temperature NO2 sample of 0.04 torr may result from molecular rotation and vibrations as well as inter-molecular collisions.

In a gas cell with pressure of 0.04 torr at 300 K, can you calculate number of NO₂ molecules per cm³?

(b) The excitation fluorescence spectrum of supersonically cooled pure NO₂. At very low translational temperature (e.g 30 K), NO₂ molecules still rotate and vibrate.

Important features of a molecular beam include (1) molecular density is very high (e.g. 10¹⁵ molecules per cm³), (2) all molecules are moving with the same velocity, (3) probability of inter-molecular collisions is low. Can you calculate the root mean square velocity of NO₂ at STP?

(c) The excitation fluorescence spectrum of supersonically cooled 5% NO₂ in Ar. At very low translational temperature (e.g 3 K), NO₂ molecules still rotate and vibrate. This is called seeded molecular beam technique. The probability of inter-molecular NO₂-NO₂ collisions is substantially reduced.

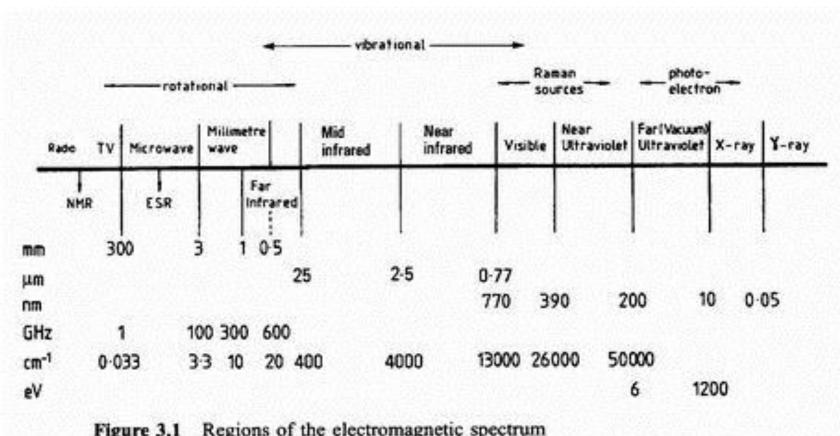


Figure 3.1 Regions of the electromagnetic spectrum

Vibronic (excitation LIF) spectrum of HeI_2 D = 0.025 mm, $P_0 = 110$ atm, $P = 10^{-4}$ torr $X_m / D = 0.67 [P_0/P]^{(1/2)}$, $X_m = 484$ mm = 48.4 cm

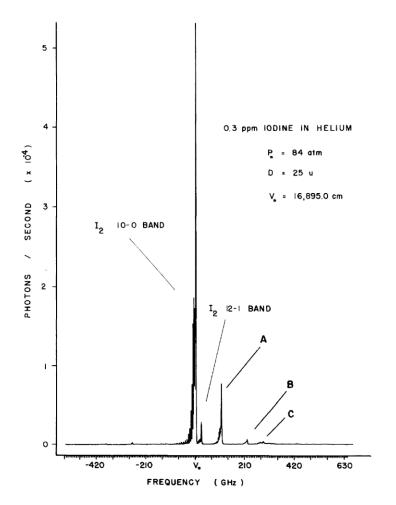


FIG. 4. Fluorescence excitation spectrum of a supersonic jet of I_2 in He in the spectral region near the 10-0 vibronic band of the $\tilde{B}-\tilde{X}$ transition of I_2 . Laser bandwidth was 1 GHz FWHM.

The molecular beam travels along flow streamline at 2 $\times 10^{5} \text{ cm/s}$. The focused laser intersect the molecular beam at 2 mm downstream from the nozzle. The translational temperature is estimated to be 3.1 x 10⁻⁴ K. The rotational temperature of I_2 is less than 1 K and the vibrational temperature is 50 K.

Smalley, et al. J. Chem. Phys. 64 (1976) 3266 (1976).

Rotational temperature of a supersonically cooled I₂ molecular jet

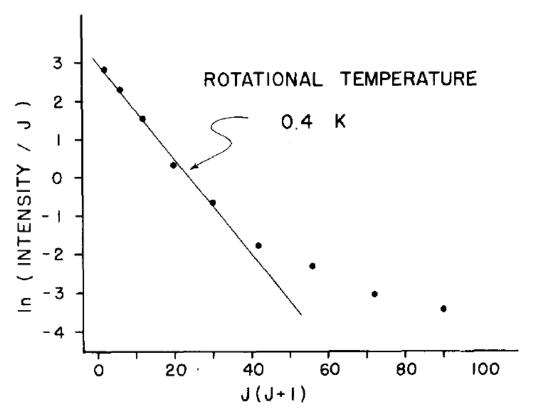
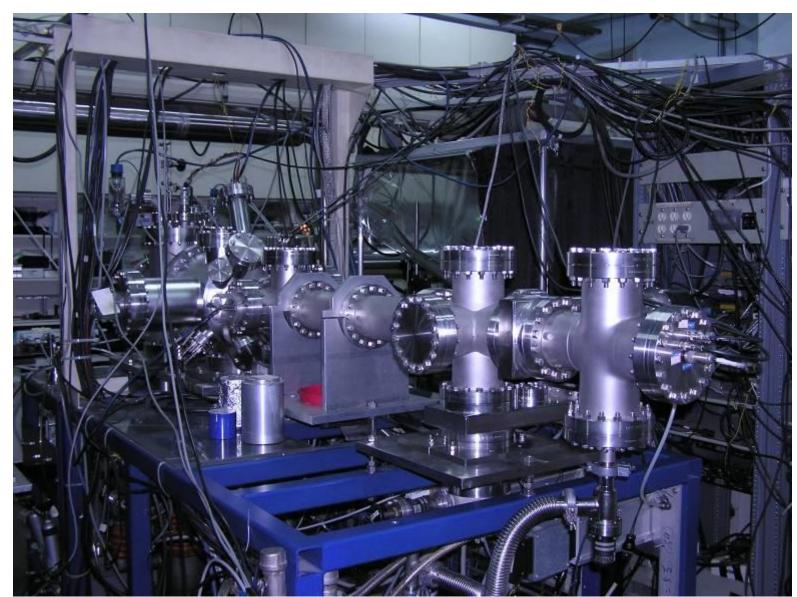
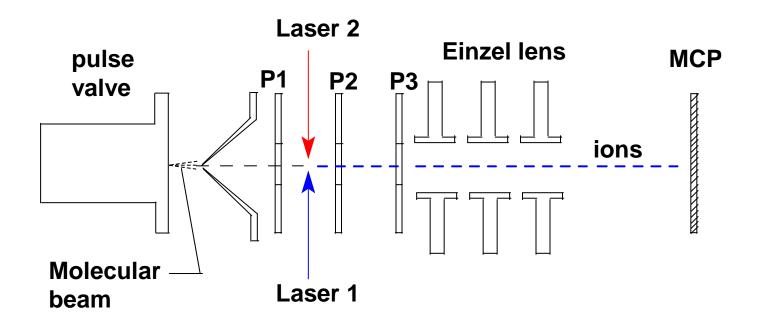
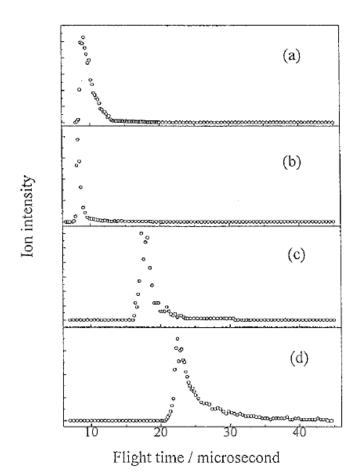



FIG. 7. Plot of the observed intensity of members of the P branch of the 10-0 vibronic transition of I_2 in the supersonic jet ($P_0=91$ atm, $D=25~\mu{\rm m}$, X=0.5 cm. The axes have been chosen so as to produce a linear plot for a Boltzmann distrition of intensities.


Smalley, et al. J. Chem. Phys. 64 (1976) 3266 (1976).

TOF mass spectrometer for REMPI and MATI experiments


A linear co-axial type time-of-flight (TOF) mass spectrometer for laser spectroscopic experiments

For an isentropic expansion of an ideal gas, e.g. He or Ar, $T_2/T_1=(P_2/P_1)^{[(\gamma-1)/\gamma]}$ $\gamma=Cp/Cv=5/3$, If $T_1=300$ K, $P_2=10^{-6}$ torr, $P_1=1000$ torr, then $T_2=0.07$ K (translational temperature)

Under this experimental condition, the gas phase molecule is prepared at electronically ground S_0 state for laser spectroscopy (LIF, REMPI, etc.) experiments.

Velocity distributions of p-fluoroaniline/He, Ne, Ar seeded beams

Figure 3. TOF spectra of p-fluoroaniline beams with the carrier gas of (a) He at 1.1 bar, (b) He at 2.3 bar, (c) N_2 at 2.3 bar, and (d) Ar at 2.3 bar.

TABLE 1: Characteristics of the *p*-Fluoroaniline Beam

carrier gas (P ₀ /bar)	$v_{ m mp}/{ m m~s^{-1}}$	$\Delta v/v_{ m mp}$
He (1.1)	1300	0.17
He (2.3)	1400	0.07
$N_2(2.3)$	670	0.08
Ar (2.3)	540	0.08

Tzeng, et al. J. Phys. Chem. A 103 (1999) 8612-8619. Ionization energy of *p*-fluoroaniline and vibrational levels of *p*-fluoroaniline cation determined by massanalyzed threshold ionization spectroscopy