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Mass-analyzed threshold ionization (MATI)
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TOF MS for REMPI and MATI experiments
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Normal vibrations of benzene

. Tangential vibrations

(a) C-C stretching: 8a, 8D,
19a,19b,14

(b) C-X in-plane bending: 3,
Oa, 9b, 15, 1843, 18b

Radial vibrations

(a) radial skeletal: 1, 12, 6a,
6b

(b) C-X stretching: 2,7a, 7D,
13, 20a, 20b

. Out-of-plane vibrations

(a) out-of-plane skeletal:
4,16a,16b

(b) C-X out-of-plane: 5, 10a,
10b, 11, 17a, 17b

Assignment of vibrational spectra of
seven hundred benzene derivatives,
G. Varsanyi, Wiley, New York, 1974.



Vibronic spectra of 3-chloro-4-fluoroaniline isotopologues

lon Intensity (arb. units)
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recorded by using
1C-R2PI method

Substituent-sensitive bending

17at,, y(CCI), y(CH)

9aly, B(CCI), B(CF), B(CN)
154, B(CF), B(CN)

125, YNH(wag)

In-plane ring deformation

6bt,, B(CCC)
6al,, B(CCC)
11,, breathing
121, B(CCC)

3-Chloro-4-fluoroaniline studied by
resonant two-photon ionization and
mass-analyzed threshold ionization
spectroscopy

K.W. Lo, W.B. Tzeng, J. Mol.
Spectrosc. 288 (2013) 1-6



MATI spectra of 3°Cl 3-chloro-4-fluoroaniline

lon Intensity (arb. units)
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I 1 35C]
6a 1 12!
A i I Wy, X6
9a' (b) via S 9a’
J..J
0
15' (c)via S 15'
6b' (d) via S 6b'
6a’ (e) via 816a1
0+
jll x2

0 300 600 900 1200

Ion Internal Energy / cm’

recorded by using
2CR2-MATI method
via 5 intermediate states

Substituent-sensitive bending

9aty, B(CCI), B(CF), BCN)
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In-plane ring deformation

6bl,, B(CCC)
6al,, B(CCC)

Geometries & vibrational
coordinates of D, ~ S;



Laser Chemistry

(a)

Spectroscopy, Dynamics and Applications

Helmut H. Telle Swansea University, UK
Angel Gonzdlez Ureia Universidad Complutense de Madrid, Spain

(b}
Robert J. Donovan Edinburgh University, UK

lon signal intensity ( arb. units

65700 65800 65900 66000 66100
Two-photon energy (em™') ——e-

John Wiley & Sons, Ltd figure 18.7 Tonization of p-methylphenol via the §,0°
intermediate state, using the methods of (a) 2C-R2PT and
(b) MATI. Reproduced from Lin et al J. Chem. Phys., 2004,
120: 10515, with permission of the American Institute of
Page 254 Physics
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Jung-Lee Lin, Changyong LI, Wen-Bih Tzeng
J. Chem. Phys. 120, 10513-10519 (2004)



Rotamers of 3-methoxystyrene

These stable four rotamers of m-methoxystyrene
have been found to be co-exist in the chemical
sample by using (1) resonant two-photon ionization
and mass analyzed threshold ionization spectroscopy
and (2) DFT calculations.

Identification of four rotamers of m-methoxystyrene
by resonant two-photon ionization and mass
analyzed threshold ionization spectroscopy,

Y. Xu, S.Y. Tzeng, V. Shivatare, K. Takahashi, B.
Zhang, W.B. Tzeng, J. Chem. Phys. 142 (2015)
124314,

Rotamer III Rotamer IV



Ion Intensity (arb. unit)

Vibronic spectrum of 3-methoxystyrene
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11,, breathing

121, B(CCC)

One Photon Energy / cm’”
Rotamer 0% (in cm™) IE (incm?)
I 32,767 65,391
[ 32,907 64,977
11 33,222 65,114
IV 33,281 64525
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[on Intensity (arb. unit)

PIE curves of rotamers of
3-methoxystyrene by 2C-R2PI
via their respective 09, states
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lon Intensity (arb. unit)

MAT I spectra of 3-methoxystyrene (I)
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Ion Intensity (arb. unit)

MAT I spectra of 3-methoxystyrene (I1)
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[on Intensity (arb. unit)

MATI spectra of 3-methoxystyrene (111)
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Ion Intensity (arb. unit)

MAT I spectra of 3-methoxystyrene (1V)
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dihedral

A

dihedral a

angle @/ degree

dihedral angle @/ degree

ngle @/ degree

120 1
dihedral angle ¢/ degree

2-d potential energy surfaces for
Interconversion of 4 rotamers of 3-
methoxystyrene in the S, S, and D,
states by the B3PW91/6-311++G(d,p)
calculations.

The calculated barrier of the ring-OCH,
rotation of 3-methoxystyrene in the S,
Sy, and D, states are 1156, 3712, and
3644 cm, whereas those of the ring-
vinyl rotation are 1332, 6047, and 2354
cmL, respectively.
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Schematic diagram of energy level for rotamers of 3-methoxystyrene

Rotamer | Rotamer Il Rotamer III Rotamer IV
IE=65391 cm”  IE=64977cm’ IE=65114cm” IE= 64525 cm’

835 cm l 527 cm I
.. 369 cm’ l
$ T# N E, and E, are the
| R R S B T R S W meagured values,
obtained from our
E=32624cm”  E=32070cm” E=31892cm” E=31244cm’ REMPI and MATI
| experiments
s, _ | e r |
A t e - Relative total energy
—— s S8l of the rotamers are
obtained from the
B3PW91/6-
E=32767cm’  E=32907cm’ E=3322em' E=3381em’  S11++G(d,p)
calculations.
S, I R 7N A I o1
....................... S
52 cm 21 cm’ 83 cm’”
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Some organometallic sandwich molecules

Bis(#°-Benzene)Chromium
Bz2Cr
Molecular weight : 208 a.m.u.

(n%-Benzene)(#5-Biphenyl)Chromium
BzPh2Cr
Molecular weight : 284 a.m.u.

Bis(#°-Biphenyl)Chromium
(Ph2)2Cr
Molecular weight : 360 a.m.u.




One-photon MATI spectrum of (r#%-Benzene)(n°-Biphenyl)Chromium
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Modification on sample container of pulsed valve
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Experiment Setup
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ll Substituent Effects |Hot Paper| %J

@® Fine Substituent Effects in Sandwich Complexes: A Threshold ‘ BZZCI‘

lonization Study of Monosubstituted Chromium Bisarene w
Compounds Jd
Sergey Yu. Ketkov,**! Gennady V. Markin,”® Sheng Y. Tzeng,"™ and Wen B. Tzeng*"!
& v
BB

> BzPh,Cr
%J
2 &
>
> j}‘ e
lonization ‘a‘ :::j (PhZ)ZCr
energy of ,-&, o ==
(CeHg)(CeHSR)Cr & - ‘?.,
; I/ cm
R=H
o /,1 L 44000 Molecule IE SIE
g/l Bz,Cr 44087 0
I 43392 ~ oohr 44081 i
43‘374 y (Ph,),Cr 42874 1213
el L 43000
Chem. Eur. J., 22 (2016) 4690
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Bis(#%-biphenyl)chromium

e
W‘) PIE curve
-3 PO= 1468 torr
- P1=4.0*10"8 Torr

Focus= +380 V
(a) PIE curve . 1
0', 42874 cm Heating: 232 °C

l

(b) MATI MATI \
PO= 1663 torr
P1=8.0*108 Torr

Ul: AMP=4.00 V offset=-1.25V
Focus= +380 V

\I—Ieating: 232 °C )
IE (exp) = 42874 + 10 cm!

9

8943

lon Intensity (arb. units)
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Results J’”’J m
%

f&‘
o)

Bis(#°-biphenyl)chromium
[(Ph),Cr]

IE (exp) = 42874+ 10 cm?

\

(a) PIE curve

0", 42874 cm*

lon Intensity (arb. units)

(6) MATI
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2)2 9 9 ° 9 s ° ° o’
- X 4‘ &4 J 3 ¥ Ny J
J-J“J;“J; Jd“‘ ﬂ‘da )&Nj i{: &Hﬁjﬁj" H—“S j, HHj 3: ayﬂ‘-’;&:‘ Mﬁgjgd
J 9
B3PWO1
6311++(d.p (Phy),Cr_p_a | (Ph,),Cr_p_s | (Phy),Cr_o_a | (Ph,),Cr_o_s [ (Ph,),Cr_m_a | (Ph,),Cr_m_s | (Ph,),Cr_e_a | (Ph,),Cr_e_s
S, (ZPE) -1970.546597|  -1970.546681| -1970.547123| not converge| -1970.546725| -1970.546381| not converge| -1970.544451
D, (ZPE) -1970.354524|  -1970.354515| -1970.354892| not converge| -1970.354552| -1970.354377| not converge| -1970.352133
(':il(Hamee)— 0.192073 0.192166 0.192231 0.192173 0.192004 0.192318
IE . 42155 42176 42190 42177 42140 42209
(cm™?) cal
de 719 698 684 697 734 27 665
de(%) 1.7 1.7 1.6 1.7 1.7 1.6
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(@) PIE curve 45718 em®
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(b)l MATI
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(y8-biphenyl)(#°-toluene)chromium

PIE curve

P0= 1969 torr
P1=1.0*10"7 Torr
Focus= +600 V
Heating: 124 °C

MATI
P0= 1720 torr
P1=1.0*10"' Torr

Focus= +100 V
\I—Ieating: 124 °C

Ul: AMP= 250V offset=-1.25V

\

J

IE (exp) = 42718 £ 10 cm'
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